A Prospective Study on Ascitic Fluid High Sensitive C - reactive protein (hs-CRP) in Patients of Spontaneous Bacterial Peritonitis Gajraj Kaushik¹ ¹Assistant Professor, Department of General Medicine, World College of Medical Sciences and Research Hospital, Jhajjar, Haryana, India. Received: October 2020 Accepted: October 2020 #### **ABSTRACT** Background: C - reactive protein (CRP) is an acute phase reactant. Its level increases in the presence of acute or chronic inflammation and infections. High sensitive CRP (hs-CRP) is more sensitive than CRP as an inflammatory marker. High sensitive CRP has been known to be elevated in chronic liver diseases and Spontaneous Bacterial Peritonitis (SBP). Aim: The aim of the study was to establish the role of ascitic fluid high sensitive C-reactive protein (hs –CRP) as a prognostic indicator in patients with SBP. Methods: A total of 100 patients with decompensated cirrhosis admitted in medicine ward and ICU were included, of which 50 patients of acute bacterial peritonitis were used as study group and 50 patients of sterile ascites were used as control group. Hs-CRP level of cases and controls were estimated. SBP cases were treated with its standard recommended antibiotic therapy and hs-CRP level was again estimated after 5 days of antibiotic therapy or at the time of discharge. Results: The mean level of hs-CRP before antibiotic therapy of the patients with SBP was significantly higher than that of the patients without spontaneous bacterial peritonitis (t98=17.72; p=0.0001). The mean level of hs-CRP at 5th day or discharge after initiation of antibiotic therapy was significantly lower than that of level of hs-CRP before initiation of antibiotic therapy (p<0.05). The mean hs-CRP of the cases with poor outcome (death and prolonged hospital stay) was significantly higher than others. Conclusion: Ascitic fluid hs-CRP level can be considered as a surrogate prognostic marker in cases of Cirrhosis with SBP. Keywords: Ascites, hs-CRP, Spontaneous bacterial peritonitis, Cirrhosis. # **INTRODUCTION** Cirrhosis is a chronic from of liver disease which is usually defined histologically by development of regenerative nodules surrounded by fibrous bands. This in turn leads to development of intrahepatic, sinusoidal portal hypertension and end stage liver disease. Ascites is a known complication of cirrhosis and portal hypertension. Usually it is sterile, but when it gets infected by bacteria then the condition is termed as Spontaneous Bacterial peritonitis (SBP). SBP is an ominous complication in patients with cirrhosis. SBP can occur in any race and both sexes equally. Harold Conn first recognized the disorder in the 1960s. Enteric organisms have traditionally been isolated from more than 90% of infected ascites fluid in SBP, suggesting that the GI tract is the source of bacterial contamination. Patients with cirrhosis who are in a decompensated state are at the highest risk of developing SBP.^[2] Majority of SBP infections have been caused by aerobic gram- negative organisms (50% of these being Escherichia coli). The remainder has been due # Name & Address of Corresponding Author Dr. Gajraj Kaushik Assistant Professor, Department of General Medicine, World College of Medical Sciences and Research Hospital, Jhajjar, Haryana, India. to aerobic gram-positive organisms (19% streptococcal species). One study cites a 34.2% incidence of streptococci, ranking in second position after Enterobacteriaceae. Viridans Group Streptococci (VGS) accounted for 73.8% of these streptococcal isolates. [3,4] C-Reactive Protein (CRP) was discovered by Tillet and Francis in 1930 and they proposed the hepatic synthesis of CRP. It is an acute phase protein found in the blood stream the levels of which rise in response to inflammation. High sensitivity CRP (hs- CRP) test measures low levels of CRP using Laser nephelometry. This test gives immediate results within 25 minutes and also with sensitivity down to 0.04 mg/l. It is a more sensitive inflammatory marker. Role of hs-CRP as a marker of inflammation has been extensively studied in Coronary Artery Diseases (CAD). Apart from CAD, hs- CRP is also being studied in other conditions like chronic liver diseases, collagen vascular diseases, inflammatory arthritis. As far as liver diseases are concerned CRP and hs-CRP has been studied as an inflammatory marker in infective hepatitis, alcoholic liver diseases, cirrhosis and SBP. Studies have supported the view that CRP levels increases in decompensated cirrhosis and infections in cirrhosis. [6-9] In this study we will assess the role of ascitic fluid hs-CRP level as a prognostic marker in cases of cirrhotic ascites with SBP. #### <u>Aim</u> To compare the levels of ascitic fluid hs-CRP in patients with SBP and without SBP, and to assess the levels of ascitic fluid hs-CRP in patients with SBP before the initiation of antibiotic therapy and on 7th day after initiation of therapy or before discharge. # **MATERIALS AND METHODS** The present study was carried out in the Department of Medicine at Acharya Vinoba Bhave Rural Hospital of Jawarlal Nehru Medical College, Sawangi (Meghe), Wardha for period of 2 years from September 2013 to October 2015. The study was initiated only after obtaining permission from the institutional ethics committee. # Study design Prospective case control study. #### Sample size A total of 100, (50 cases, 50 controls) were studied. ## **Inclusion criteria** # Study group A total of 140 patients with decompensated cirrhosis admitted in medicine ward and ICU were screened for the study and out of them 40 were excluded from being taken into the study after applying the exclusion criteria given vide infra. ## **Exclusion criteria** - Coronary artery diseases, Diabetes mellitus, - Collagen vascular disorders, Any form of acute arthritis, Acute infections, Sepeticaemia, - Patients not giving consent. ## **Definition of Cases** Fifty cases of cirrhosis with ascites that satisfied the criteria of SBP. The definitive diagnosis of SBP was made if there was a positive ascitic fluid bacterial culture and an elevated ascitic fluid absolute Polymorpho Nuclear (PMN) leukocyte count of ≥250 cells/mm, in absence of any intra abdominal source of infection. Patients with Culture Negative Neutrocytic Ascites (CNNA) with a PMN cell count ≥ 250 cells/mm3 without any intra abdominal source of infection and who were not treated with antibiotics 30 days prior to presentation were also considered as SBP. Fifty patients of decompensated cirrhosis with sterile (non SBP) ascites were taken as controls. [10] # Sources of data Patient general information (name, age, sex, address) was noted. A detailed history regarding duration of cirrhosis, amount and duration of alcohol intake, blood transfusions, intravenous drug abuse, promiscuous sexual behaviour, drug intake, investigation history in form of (serologic evaluation/USG of liver confirming cirrhosis), and prior treatment history was taken. History of fever, abdominal pain, haematemesis, malena, haematochezia, altered mentation, oliguria was noted. A detailed general physical examination along with signs of hepatocellular failure were sought and noted. Cirrhosis and Ascites was clinically diagnosed and confirmed by ultrasound of abdomen. ## **Laboratory Investigations** Haemoglobin, TLC, Serum bilirubin, AST, ALT serum creatinine, INR, was estimated in all cases. All the patients underwent diagnostic/ therapuetic paracentesis with all aseptic precautions. Immediately, 10 ml of ascitic fluid was inoculated into an anaerobic and aerobic blood culture bottles, bottle incubation and subsequent testing were carried out according to the hospital microbiology laboratory protocol. 10 to 20 ml of fluid was placed in a sterile container for direct microscopic examination, gram- stained film, and culture on laboratory media including routine blood, MacConkey, Mannitol salt agar plates, and thioglycollate broth. Culture-positive samples were then identified. Approximately 3 ml of fluid was placed in an EDTA tube for estimation of the total cell count and PMNL count using an automated cell counter model Sysmex Kx N 21. Ascitic fluid hs -CRP was estimated by tubidimetry method. All patients were divided according to child pugh criteria. SBP cases were treated with standard recommended antibiotic therapy (inj cefotaxim 2 g 12 hourly for 5th days). Highly sensitive CRP levels were again estimated after 5th day of antibiotic therapy or at the time of discharge. Normal hs-CRP, ranges from 0.5 to 10 mg/l. # **Statistical Analysis** Statistical Analysis was performed with help of Epi Info (TM) 3.5.3 which is a trademark of the Centers for Disease Control and Prevention (CDC). Test was used to test the association between different study variables under study. Test of proportion (Z-test) was used to test the significant difference between two proportions. t-test was used to test the significant difference between means. Odds ratio (OR) with 95% Confidence Interval (CI) was calculated to measure the different risk factor. Significance level was set at 0.05 (p<0.05) and confidence intervals were at 95% level. #### RESULTS Mean age of study subjects was 46.84 ± 12.46 with no significant difference in mean age of the two groups (45.34 vs. 48.34 years). The ratio of gender was found as Male: Female: 6.1:1 (p< 0.01) [Table 1]. Among the aetiologies of cirrhosis cases proportion of alcoholism (74%) was significantly higher (Z=9.16; p=0.001) followed by viral infection [Table 2]. Proportion of Escherichia Coli (38%) was significantly higher than other organism (Z=3.50; p=0.00001). Only 4% were Enterococus SP. and 34% were CNNA [Table 3]. Corrected Chi-square test showed that there was significant association between level of hs- CRP before antibiotic therapy and groups (p=0.0001). The mean level of hs-CRP before antibiotic therapy (mean \pm S.D.) of the patients with SBP was 77.20 \pm 11.65 mg/dl with range 56–93 mg/dl and the median was 77.50 mg/dl. The mean level of Hs-CRP before antibiotic therapy (mean \pm S.D.) of the patients without spontaneous bacterial peritonitis was 42.50 \pm 7.48 mg/dl with range 22 – 58 mg/dl and the median was 42.0 mg/dl [Table 4]. The t-test showed that the mean level of Hs-CRP before antibiotic therapy of the patients with SBP was significantly higher than that of the patients without spontaneous bacterial peritonitis (t98=17.72; p=0.0001). The t-test showed that the mean level of Hs-CRP at 5th day or discharge after initiation of antibiotic therapy was significantly lower than that of level of hs-CRP before initiation of antibiotic therapy (t98 = 15.12;p=0.00001). Thus significant reduction in level of hs-CRP was observed [Table 5]. The mean ascitic fluid hs-CRP level in the patient, who died (80.20±13.65) and in the patient who had prolong hospital stay more than two weeks (74±11.75) was also significantly higher than the mean ascetic fluid hs-CRP level of the controls who died (44.56±8.48) or had prolong hospital stay (40±6.42), again emphasizing the prognostic significance of hs-CRP [Table 6]. Table 1: Baseline characteristic of cases and controls. | Characteristics | SBp (n=50) | Without SBp (n=50) | t98- and χ2 value | p-value | |---|--------------|--------------------|-------------------|-----------| | Age | 45.34±11.73 | 48.34±12.46 | t98=1.014 | 0.32 | | Sex | | | $\chi 2 = 2.07$ | 0.14 | | Male | 46(92.0%) | 40 (80.0%) | | | | Female | 4(8.0% | 10 (20.0%) | | | | Aetiology | | | | 0.001 | | Alcoholic | 80% | 68% | $\chi 2 = 6.69$ | | | Other Cause | 20% | 32% | , | | | НВ | 9.60±1.70 | 10.21±1.97 | 1.65 | 0.10 | | TLC | 13.10±9.51 | 11.80±17.40 | 0.46 | 0.64 | | Sr. bilirubin | 5.56±4.56 | 3.5±2.1 | 2.90 | 0.0046 | | AST | 128.00±56.26 | 110.00±66.45 | 1.46 | 0.14 | | ALT | 66.70±30.34 | 62.71±66.50 | 0.38 | 0.70 | | SR.Creatinine | 1.8±0.70 | 1.1±0.68 | 5.07 | 0.0001 | | INR | 2.8±1.28 | 1.93±0.60 | 4.35 | 0.0001 | | Child Pug Score | | | $\chi 2 = 5.12$ | 0.05 | | A | 11(22.0%) | 21(42.0%) | , | | | В | 18(36.0%) | 16(32.0%) | | | | C | 21(42.0%) | 13(26.0%) | | | | Ascitic Fluid HSCRP Level | 77.20±11.65 | 42.50±7.48 | t98=17.72 | 0.0001 | | Death | 12 (24.0%) | 5 (10.0%) | Z=2.63 | P=<0.5 | | Mean HSCRP Level Who Died | 80.20±13.65 | 44.56±8.48 | t98=15.68 | P=0.00001 | | Hospital Stay More Than 2 Week | 15 (30.0%) | 9 (18.0%) | Z=1.99 | P=<0.05 | | MeanHs-CRP Level in Hospital Stay More Than 2
Week | 74±11.75 | 40 ±6.42 | t98=18.56 | P=0.00001 | Table 2: Distribution of aetiology of cirrhosis. | Aetiology | (n=100) | |----------------------|------------| | Alcoholism | 74 (74.0%) | | HBV | 8 (8.0%) | | HCV | 4 (4.0%) | | Alcoholic + HBV | 7 (7.0%) | | HCV + HBV | 2 (2.0%) | | Cryptogenic | 10 (10.0%) | | Autoimmune Hepatitis | 1 (1.0%) | | Billiary Cirrhosis | 3 (3.0%) | Table 3: Aetiology of SBP. | Organism | No. of SBp patient (N 50) | |------------------|---------------------------| | Escherichia coli | 19 (38%) | | Klebsiella | 8 (16%) | | Strep. Viridians | 4(8%) | | Enterococus Sp. | 2 (4%) | | CNNA | 17 (34%) | # Kaushik: HS-CRI in SBI Table 4: Distribution of Ascitic fluid level of hs-CRP before antibiotic therapy in two groups. | Level of hs-CRP (mg/dl) | With spontaneous bacterial peritonitis (n=50) | Without spontaneous bacterial peritonitis (n=50) | Total | |-------------------------|---|--|-------| | 20-29 | 0 | 1 | 1 | | Row % | 0.0 | 100.0 | 100.0 | | Col % | 0.0 | 2.0 | 1.0 | | 30-39 | 0 | 13 | 13 | | Row % | 0.0 | 100.0 | 100.0 | | Col % | 0.0 | 26.0 | 13.0 | | 40-49 | 0 | 26 | 26 | | Row % | 0.0 | 100.0 | 100.0 | | Col % | 0.0 | 52.0 | 26.0 | | 50-59 | 4 | 10 | 14 | | Row % | 28.6 | 71.4 | 100.0 | | Col % | 8.0 | 20.0 | 14.0 | | 60-69 | 13 | 0 | 13 | | Row % | 100.0 | 0.0 | 100.0 | | Col % | 26.0 | 0.0 | 13.0 | | □70 | 33 | 0 | 33 | | Row % | 100.0 | 0.0 | 100.0 | | Col % | 66.0 | 0.0 | 33.0 | | TOTAL | 50 | 50 | 100 | | Row % | 50.0 | 50.0 | 100.0 | | Col % | 100.0 | 100.0 | 100.0 | | Mean \pm s.d. | 77.20±11.65 | 42.50±7.48 | | $[\]frac{2}{2} = 88.57$; p=0.0001; S-Significant Table 5: Comparison of level of Ascitic fluid hs-CRP before antibiotic therapy and at 5th day or discharge after initiation of antibiotic therapy of the patients with spontaneous bacterial peritonitis. | Value of descriptive statistics | Ascetic fluid level of hs- crp
before antibiotic therapy
(mg/dl)(n=50) | Ascitic fluid level of hs-crp at 5 th day or
discharge after initiation of antibiotic
therapy (mg/dl)(n=50) | t98 | p-value | |---------------------------------|--|--|-------|---------| | Mean \pm s.d. | 77.20±11.65 | 44.46±9.92 | 15.12 | 0.00001 | | Median | 77.5 | 42.0 | | | | Range | 56.0-93.0 | 30.0-64.0 | | | Table 6: Comparison of outcome in SBP and non-SBP. | | SBp (n=50) | Non SBp (n=50) | p-value | |--|-------------|----------------|------------------------| | Death | 12 (24.0%) | 5 (10.0%) | Z=2.63;p<0.05 | | Mean Ascitic Fluid Hs-CRP Level Who Died | 80.20±13.65 | 44.56±8.48 | t98 = 15.68; p=0.00001 | | Hospital Stay More Than 2 Week | 15 (30.0%) | 9 (18.0%) | Z=1.99;<0.05 | | Hs-CRP Level in Hospital Stay More Than 2 Week | 74±11.75 | 40 ±6.42 | t98 = 18.56; p=0.00001 | # **DISCUSSION** Present study was conducted with the objective of establishing the role of hs-CRP as a prognostic indicator in patients with Spontaneous Bacterial Peritonitis (SBP) and to compare its level in patients with SBP and patients with sterile ascites. # **Aetiology** Literature shows that in India most cases of cirrhosis are due to alcohol and viral hepatitis B and C.^[12] These results were in accordance with the present study [Table 2]. # **Symptoms and Signs** In our study the predominant symptoms were abdominal pain (76%) followed by fever (72%) and tenderness of abdomen on palapation (64%). Syed VA et al., in his study found that the most common presenting symptoms were UGI bleeding (75%) followed by pain abdomen (65%). [13] Fever was found in 45%. Minhas et al., reported fever 54%, pain abdomen 57% and Hepatic encephalopathy 67%. [10] Completely asymptomatic cases have been reported between 14%-100%. Great variation in symptoms and signs has been reported in different studies. #### **Culture** In our study most common organism isolated was E.coli (38%) followed by Kliebsiella (16%), Strep. Viridians (8%), and Enterococcus (4%) and 34% cases had CNNA [Table 3]. ## **Serum creatinine** The mean Serum creatinine in SBP patients in our study was significantly higher than the controls [Table 1]. Increased levels of seum creatinine in cases of decompensated cirrhosis can occur due to a number of factors like excessive diuretic therapy, haematemesis, intravascular volume depletion, large volume paracentesis, shock and most importantly development of hepato renal syndrome. Infection is a well known entity that causes rise in serum creatinine in cases of cirrhosis of liver. Other studies had similar results.^[14] # International normalized ratio In this study INR of cases was significantly raised than the controls [Table 1]. Similar to our findings increase prothrombin time was seen in cases of SBP in a study.^[15] # **Child Pugh Score** Child's score was originally designed for predicting the prognosis of cases of cirrhosis with portal hypertension that underwent surgery, where portocaval shunt was a trade-off. Child's score included two continuous variables (bilirubin and albumin) and three discrete variables (ascites, encephalopathy, and nutritional status). The discrete variables were included because they had significant influence on the prognosis of these patients. In this view we studied the influence of SBP and Child's criteria. Studies have shown that infection in cirrhosis co relates adversely with child- pugh scores. [16,17] In our study, 78% of patients with SBP were in Child's class C or B, (p<0.05) compared to controls) suggesting that SBP adds to the additional burden for the prognosis of cirrhosis. This was in agreement with other studies that showed SBP developed with more advanced liver disease and adversely affected the outcome of the patients. $^{[18]}$ It would be interesting to discuss that the original Child Pugh's criteria only includes ascitis as one of the factors, whether SBP should be also added as an additional factor for estimating prognosis in cases of cirrhosis should be pondered upon. #### **Ascitic Highly Sensitive CRP (HS-CRP)** In our study the mean hs-CRP level of the patients with SBP (77.20 \pm 11.65) was significantly higher than that of the patients without spontaneous bacterial peritonitis (42.50 \pm 7.48) (p<0.01) [Table 1,4]. But it was also interesting to note that the mean hs-CRP in the control group were also more than the mean standard normal range of hs-CRP (10 mg/l) in active inflammation. This could be again explained by the fact that there is existence of continuous inflammation in decompensated cirrhosis. Evidence suggests the active role of TNF-α, Cytokine storm, IL 6, Toll like receptor activity all are involved in the active inflammatory process, so even decompensated cirrhosis can also increase the inflammatory markers. SBP adds to the existing inflammatory burden leading to still higher levels of inflammatory markers like hs-CRP. In this study the mean Hs-CRP levels at 5th day after initiation of antibiotic therapy or, discharge were significantly lower, compared to that of before initiation of antibiotic therapy (p<0.01) [Table 5]. This suggests that early suspicion, detection and treatment of SBP do contribute to decrease the inflammation burden and overall prognosis of SBP patients. Guler K et al., studied serum hs-CRP level in cases of SBP and compared serum hs-CRP levels two days after standard antibiotic treatment. [19] There was statistically significant decrease in the mean serum hs-CRP level two days after antibiotic therapy. ## **Prognosis and Out come** Hospital stay was significantly longer in patients of SBP (12.0 vs 5.0 days) while poor outcome was also significantly associated with patients of SBP (24% vs 10% deaths). The mean ascetic fluid hs-CRP level in the patient who died (80.20 ± 13.65) and in the patient who had prolong hospital stay more than two weeks (74 ± 11.75) was also significantly higher than the mean ascetic fluid hs-CRP level of the controls who died (44.56 ± 8.48) or had prolong hospital stay (40 ± 6.42) , again emphasizing the prognostic significance of hs-CRP [Table 6]. ## **CONCLUSION** In the present study, we conclude that greater ascitic fluid hs-CRP levels in SBP poorly correlate with the prognosis of the patients with cirrhosis. Prompt early detection and treatment is important for a favourable outcome. Ascitic fluid hs-CRP can be considered as a surrogate prognostic marker in cases of SBP. ## REFERENCES - Conn HO. Cirrhosis. In: Diseases of the liver 4th edition. Edited by Schiff L. Philadelphia: J.B. Lippincott Company; 1975-833 - Runyon BA. Management of adult patients with ascites due to cirrhosis: an update. Hepatology. 2009;49:2087-107. - Bert F, Noussair L, Lambert-Zechovsky N, Valla D. Viridans group streptococci: an underestimated cause of spontaneous bacterial peritonitis in cirrhotic patients with ascites. Eur J Gastroenterol Hepatol. 2005;17:929-33. - Cholongitas E, Papatheodoridis GV, Lahanas A, Xanthaki A, Kontou-Kastellanou C, Archimandritis AJ. Increasing frequency of Gram-positive bacteria in spontaneous bacterial peritonitis. Liver Int. 2005;25:57-61. - Ramamoorthy RD, Nallasamy VK, Reddy R, Esther N, Maruthappan Y. A review of C-reactive protein: A diagnostic indicator in periodontal medicine. J Pharm Bioallied Sci. 2012;4(Suppl 2):S422–26. doi: 10.4103/0975-7406.100318. - Cervoni JP, Thevenot T, Weil D, et al. C-reactive protein predicts short-term mortality in patients with cirrhosis. J Hepatol. 2012;6:1299-304. - Lazzarotto C, Ronsoni M, Fayad L, et al. Acute phase proteins for the diagnosis of bacterial infection and prediction of mortality in acute complications of cirrhosis. Ann Hepatol. 2013;12:599-607. - 8. Ha YE, Kang C, Joo EJ, et al. Usefulness of C-reactive protein for evaluating clinical outcomes in cirrhotic patients with bacteremia. Korean J Intern Med. 2011;26:195-200. - Lin ZY, Chuang W, Dai CY, et al. Clinical application of Creactive protein measurement in the detection of bacterial infection in patiets with liver cirrhosis. Kaohsiung J Med Sci. 2002;18:121-26. - Mihas AA, Toussaint J, Hsu HS, Dotherow P, Achord JL. Spontaneous bacterial peritonitis in cirrhosis: clinical and laboratory features, survival and prognostic indicators. Hepatogastroenterology. 1992;39:520-22. - Runyon B, McHutchison J, Antillon M, Akriviadis E, Montano A. Short- course versus long-course antibiotic treatment of spontaneous bacterial peritonitis. A randomized controlled study of 100 patients. Gastroenterology. 1991;100:1737-42. - Ahmed S, Payeng D, Das AK. Etiological profile of cirrhosis of liver from North- East India with reference to their antihepatitis A virus seroprevalence. Onc Gas Hep Rep. 2015;4:8-13. - Syed VA, Ansari JA, Karki P, Regmi M, Khanal B. Spontaneous bacterial peritonitis (SBP) in cirrhotic ascites: A prospective study in a tertiary care hospital. Kathmandu University Medical Journal. 2007;17:48-59. - Arroyo V, Gines P, Gerbes AL, et al. Definition and diagnostic criteria of refractory ascites and hepatorenal syndrome in cirrhosis. Hepatology. 1996;23:164. - Alaniz C, Regal RE. Spontaneous Bacterial Peritonitis. A review of treatment options. PT. 2009;34(4):204-10. - Janum SH, Sovso M, Gradel KO, Schonheyder HC, Nielsen H. C-reactive protein level as a predictor of mortality in liver disease patients with bacteremia. Scand J Gastroent. 2011:46:1478-83 - Park WB, Lee K, Lee CS, et al. Production of C-reactive protein in Escherichia coli-infected patients with liver dysfunction dueto liver cirrhosis. Diagn Microbiol Infect Dis. 2005;51:227-30. - Gill AS, Singh A, Matreja PS, Chinna RS, Mahajan R, Chhina DK. Spontaneous Bacterial Peritonitis in Alcoholic Cirrhosis: An Indian Perspective. Euroasian J Hepato-Gastroenterol. 2012;2:14-19. - Guler K, Vatansever S, Kayacan SM, et al. High Sensitivity C-Reactive Protein in Spontaneous Bacterial Peritonitis with Non-Neurocytic Ascites. Hepatogastroenterology. 2009;56:452-55. Copyright: © the author(s), 2020. It is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits authors to retain ownership of the copyright for their content, and allow anyone to download, reuse, reprint, modify, distribute and/or copy the content as long as the original authors and source are cited. **How to cite this article:** Kaushik G. A Prospective Study on Ascitic Fluid High Sensitive C - reactive protein (hs-CRP) in Patients of Spontaneous Bacterial Peritonitis. Ann. Int. Med. Den. Res. 2020; 6(6):ME01-ME06. Source of Support: Nil, Conflict of Interest: None declared