Coronary CT Angiography in Asymptomatic Diabetes Mellitus.

Mohd. Ismail¹, Irfan Gul², Aamir Rashid³, Masood Tanvir⁴, Majid Jehangir⁵, Shujat Gul⁶, Aaqib Zaffar⁷

¹Associate Professor, Department of Medicine, Govt. Medical College, Srinagar, India.
²Senior Resident, Department of Medicine, Govt. Medical College, Srinagar, India.
³Post Doctoral Fellow, Department of Cardiology, SCTIMST, Trivandrum, India.
⁴Professor, Department of Medicine, Govt. Medical College, Srinagar, India.
⁵Professor, Department of Radiology, Govt. Medical College, Srinagar, India.
⁶Post Graduate, Department of Medicine, Govt. Medical College, Srinagar, India.
⁷Post Graduate, Department of Paediatrics, SRIMS, Surat, India.

Received: April 2016
Accepted: April 2016

Copyright: © the author(s), publisher. Annals of International medical and Dental Research (AIMDR) is an Official Publication of “Society for Health Care & Research Development”. It is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Background: Coronary artery disease is often asymptomatic in diabetic patients until the onset of myocardial infarction or sudden cardiac death. Coronary artery CT angiography can detect coronary artery disease with high specificity and sensitivity. Aims & objectives: To evaluate the prevalence of coronary artery disease by CT angiography in type 2 diabetes mellitus patients asymptomatic for coronary artery disease with one or more additive risk factors for coronary artery disease. Methods: This hospital based observational study was conducted from March 2013 to August 2014 at GMC Srinagar. This study was carried out among Type 2 diabetes mellitus patients asymptomatic for coronary artery disease with one or more additional risk factors for coronary artery disease. Total of 52 patients with Type 2 diabetes patient underwent Cardiac CT. Results: Mean age of study population was 57.08 ±9.33 years. 34 were males and 18 were females. 65.39% of total patient who underwent CT Angiography had plaque in coronary arteries while 34.61% have no plaque and normal coronary vessels. 19.23% patients have significant stenosis defined by luminal narrowing more than 70%. There was statistically significant relation between those who have patient significant stenosis and non-significant stenosis with regards to mean age, BMI, duration of diabetes, HDL, LDL, total cholesterol, TG, HbA1c and coronary calcium score. Conclusion: Asymptomatic diabetics with additional risk factors have high prevalence of atherosclerotic plaques with 19% having obstructive CAD. The timely detection of CAD can help in optimizing treatment.

Keywords: Coronary artery disease (CAD), asymptomatic diabetics, CT Coronary angio.

INTRODUCTION

The global prevalence of diabetes mellitus (DM) in 2014 was estimated to be 8.3% in adult aged 25 years and more.[1] The true prevalence of diabetes in Kashmir is unknown however it is estimated that 1.87% (1.89 in males and 1.77 in females) have diagnosed diabetes while 4.25% have undiagnosed diabetes and 8.08% have impaired glucose tolerance test, making total load of undiagnosed diabetes and 8.08% have impaired glucose tolerance 14.23% in Kashmir.[2] Diabetes is an important risk factor for development of coronary artery disease.[3]

Coronary artery disease is the single most common cause of death in American men and women[4] after decades of decline in coronary artery disease death rate the incidence of acute coronary syndrome has continued to rise in united states[5] moreover approximately 21% of first and recurrent annual myocardial infarctions are silent.[6] The overall prevalence of coronary artery disease in Jammu & Kashmir population studied by all diagnostic measures was 7.54% with rural of 6.7% and urban of 8.37% prevalence was higher in males, 7.80% than in females 6.63%.[7] Diabetics have great burden of atherogenic risk factors than Non diabetics including obesity, hypertension, lipid abnormalities, insulin resistance and elevated plasma fibrinogen.[8-10] Moreover, in diabetes whenever coronary artery disease is present it is in advance stage with greater extend of coronary artery involvement hence morbidity and mortality are much higher than without diabetes.[11] Patients with diabetes are known to have silent ischemia more often than those without diabetes mellitus (DM).[12-14] Another component of decrease in angina perception is that diabetic patients have
angiography for coronary heart disease screening and as a prognostic indicator in the diabetic population appear promising but further studies in larger population groups are needed. Multi-slice computed tomography angiography has good sensitivity, specificity and negative predictive value for identification of coronary heart disease in diabetic patients.

Aims & Objectives:
To evaluate the prevalence of coronary artery disease by CT angiography in type 2 diabetes mellitus patients asymptomatic for coronary artery disease with one or more additive risk factors for coronary artery disease.

MATERIALS AND METHODS
This hospital based observational study was conducted from March 2013 to August 2014 at GMC Srinagar. This study was carried out among Type 2 diabetes mellitus patients asymptomatic for coronary artery disease with one or more additive risk factors for coronary artery disease.

Inclusion Criteria
1. Type 2 diabetes mellitus
2. Age more than 40 years
3. Normal kidney function test

Exclusion criteria
1. Angina pectoris or its equivalent.
2. History of myocardial infarction, heart failure or percutaneous coronary intervention or coronary bypass craft surgery.
3. ECG showing evidences of old Q wave infarcts, LBBB or ST-T wave changes.
4. Significant arrhythmias.
5. Hepatic failure.
6. Allergy to x-ray contrast media.

Total of 52 patients with Type 2 diabetes were taken for study. In all selected patient Cardiac CT was performed on 128 slice (Siemens Somatom Definition AS/AS+ with fast care scanner), using prospective ECG gating. Premedication in form of 50 mg or 100 mg metoprolol were administered based on body mass and basal heart rate to maintain stability of cardiac rhythm (heart rate less than 70) for patient who demonstrates heart rate variability one hour before the study. A low dose, non-contrast calcium scoring examination was done in all the patients before coronary CT is done. After adequate intra venous access, a coronary CT angiography scan was performed, beginning at 2 cm above the most superior point in left anterior descending cardiac artery and extending 1-2 cm below the cardiac apex. The subjects were instructed to maintain an inspiratory breath-hold.
during which CT data and ECG trace were acquired. Left and right coronary arteries were divided into 15 segments and plaques were classified as calcified plaque (plaques with higher CT density than contrast enhancing lumen). Non-calcified plaques (plaques with lower CT attenuation than contrast enhanced lumen without any calcification and mixed type consisting of calcified and non-calcified.) subject consisting of coronary plaques were considered normal. CACT angiography was carefully examined for evidences of early signs of coronary artery disease (CAD) defined as presence of athermanous plaques in coronary vessels. In our study we found that mean coronary artery score (CACS) was 74.8±127.7 angstrom units with range from 0 to >400. On cardiac CT angiography 65.39% of total patient who underwent CT Angiography had plaque in coronary arteries while 34.61% had no plaque and normal coronary vessels. Total of 92 plaques were present in 34 diabetic patient out of 52 patient who underwent CT angiography and out of 92 plaques 33.7% were calcified 19.6% were non calcified while most of plaques 46.7% were mixed type. After analysis of CT angiography 19.23% patient have significant stenosis defined by luminal narrowing more than 70% and 34.61% of patient are disease free i.e. normal lumen and 46.15% have luminal stenosis less than 70%. Left anterior descending artery was most commonly involved in patient who had significant stenosis (66.66%) while right circumflex was involved in 33.33% of patients. Single vessel was involved in most of patient with significant stenosis in 80% while in 20% two vessel were involved.<0.001. There is also statistically significant relation of coronary calcium score and age p value 0.001. There was statistically significant relation between those who had athermanous plaques in coronary vessels and those who have no plaques with respect to body mass index ,duration of diabetes, HDL and highly significant with CACS as shown in [Table 2]. There was statistically significant relation between those who have patient significant stenosis and non-significant stenosis with regards to mean age ,BMI ,duration of diabetes, HDL, total cholesterol, TG, HbA1c and coronary calcium score .there is also statistically significant relation of stenosis and prevalence of coronary artery plaques with higher coronary artery calcium score as shown in [Table 3].

DISCUSSION

Our study, which was cross sectional conducted from March 2013 to August 2014. A total of 52 patients with history of Type 2 diabetes mellitus asymptomatic for coronary disease, with one or more additive risk factors for coronary artery disease attending SMHS hospital OPD were included.

Table 1: Lipid & Glycemic profile of patients

<table>
<thead>
<tr>
<th>Biochemical parameter</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDL</td>
<td>125.5</td>
<td>11.3</td>
</tr>
<tr>
<td>HDL</td>
<td>46</td>
<td>4.67</td>
</tr>
<tr>
<td>TC</td>
<td>184</td>
<td>14.5</td>
</tr>
<tr>
<td>TG</td>
<td>172.5</td>
<td>14.57</td>
</tr>
<tr>
<td>HbA1C</td>
<td>7.1</td>
<td>0.04</td>
</tr>
<tr>
<td>BUN</td>
<td>12.9</td>
<td>3.5</td>
</tr>
<tr>
<td>Creat</td>
<td>1.1</td>
<td>0.2</td>
</tr>
<tr>
<td>BSF</td>
<td>137</td>
<td>18.7</td>
</tr>
</tbody>
</table>

In 52 diabetic patients who were enrolled in study mostly 75% were on oral hypoglycemia agents, 5.77% were on insulin and 11.53% were on combination of insulin and oral hypoglycemia agents and only 7.65% were dietary and life style management for diabetes. Various biochemical parameter of lipid profile and glycemic control shown in [Table 1].
Ismail et al; Angiography in Asymptomatic Diabetes Mellitus

Table 2: Showing factors associated with coronary artery plaques

<table>
<thead>
<tr>
<th>Variable</th>
<th>Plaques present (n=34)</th>
<th>Plaques Absent (n=18)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean SD</td>
<td>Mean SD</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>58.4 8.79</td>
<td>54.6 10.08</td>
<td>0.168</td>
</tr>
<tr>
<td>BMI</td>
<td>28.2 2.42</td>
<td>26.3 3.28</td>
<td>0.022</td>
</tr>
<tr>
<td>Duration of Diabetes</td>
<td>6.5 2.98</td>
<td>5.5 3.60</td>
<td>0.057</td>
</tr>
<tr>
<td>LDL</td>
<td>127.4 12.94</td>
<td>122.0 6.15</td>
<td>0.102</td>
</tr>
<tr>
<td>HDL</td>
<td>45.1 5.23</td>
<td>47.7 2.72</td>
<td>0.05</td>
</tr>
<tr>
<td>TC</td>
<td>186.3 15.02</td>
<td>180.3 13.10</td>
<td>0.157</td>
</tr>
<tr>
<td>TG</td>
<td>173.8 16.48</td>
<td>170.1 10.03</td>
<td>0.395</td>
</tr>
<tr>
<td>HbA1C</td>
<td>7.3 1.13</td>
<td>6.8 0.81</td>
<td>0.164</td>
</tr>
<tr>
<td>CACS</td>
<td>113.2 144.33</td>
<td>2.4 6.88</td>
<td>0.002</td>
</tr>
</tbody>
</table>

Table 3: Showing factors associated with obstructive CAD

<table>
<thead>
<tr>
<th>Variable</th>
<th>Significant Stenosis (n=10)</th>
<th>Non-significant Stenosis (n=42)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean SD</td>
<td>Mean SD</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>64.6 5.78</td>
<td>55.3 9.16</td>
<td>0.004</td>
</tr>
<tr>
<td>BMI</td>
<td>29.8 1.72</td>
<td>27.0 2.83</td>
<td>0.039</td>
</tr>
<tr>
<td>Duration of diabetes</td>
<td>8.4 3.08</td>
<td>5.7 3.05</td>
<td>0.016</td>
</tr>
<tr>
<td>LDL</td>
<td>144.0 8.01</td>
<td>121.1 6.43</td>
<td><0.001</td>
</tr>
<tr>
<td>HDL</td>
<td>37.9 2.27</td>
<td>47.9 2.51</td>
<td><0.001</td>
</tr>
<tr>
<td>TC</td>
<td>205.0 6.88</td>
<td>179.3 11.08</td>
<td><0.001</td>
</tr>
<tr>
<td>TG</td>
<td>194.7 8.37</td>
<td>167.3 10.06</td>
<td><0.001</td>
</tr>
<tr>
<td>HbA1C</td>
<td>8.0 1.46</td>
<td>6.9 0.81</td>
<td>0.002</td>
</tr>
<tr>
<td>CACS</td>
<td>298.6 140.99</td>
<td>21.6 28.69</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Ten patients (19.86%) were having significant CAD defined by luminal narrowing ≥ 70%. 46.1% of patients had non-significant luminal narrowing < 70%. Of patients with significant luminal narrowing 80% had involvement of single vessel while 20% have double vessel, and none had triple vessel involvement .66.66% have left anterior descending artery involvement, 33% have right circumflex artery involvement, non-have left main and left circumflex artery involvement.

There was statistically significant relation between those who had coronary artery plaques and those who were plaque free with respect to with respect to body mass index (p=0.02), Duration of diabetes (p=0.057), HDL (P=0.05) CACS(P=0.002). There was statistically significant relation between those significant stenosis and non-significant stenosis with regards to mean age (P 0.004) BMI (P 0.039) duration of diabetes (P 0.016) HDL (P<0.001) LDL (P < 0.001) total cholesterol (P =0.001), TG (P <0.001) HbA1c (P= 0.002) coronary calcium score (P <0.001).

The mean age in our study was 57.8±9.33 & was comparable with studies [25-30]. 65% of patient in our study were male which was comparable with other studies [25,26,27,29]. Average BMI in our study was 27.5±2.86 & showed significant relationship between high BMI with CACS, Coronary artery disease & significant stenosis. BMI was comparable with other studies. Average duration of diabetes was 6.18±3.2 years in our study comparable to other studies [25,27]. Family history of coronary heart disease was present in 13.5% of population. Most of our patients were hypertensive in our study (82.7%) comparable to other studies [26,29]. 32.7% of patients were smokers.
Coronary artery plaques on cardiac CT
Angiography was in 65.39% of study population in our study comparable with other studies.
25,26 however some studies 30 have shown plaques were present in 90% of patients. The patients in these studies had higher age and BMI as compared to our study. Significant stenosis was present in 19.3% of the patients in our study which is in conformity with other studies. 27-29,31

Our study demonstrates the value of screening diabetic patients with one or more risk additive risk factors for CAD as 19% of our population had significant CAD (coronary narrowing > 70%). Diabetic individuals have higher risk of developing CAD at an earlier age. The first presentation of CAD in diabetics can be a fatal MI, hence the need for screening individuals with diabetes with additive risk factors cannot be over emphasized. However on the other hand there is no published data, which has shown that a prospectively applied screening program has improved outcome in asymptomatic diabetic patients.

CONCLUSION

Asymptomatic diabetics with additional risk factors have high prevalence of atherosclerotic plaques with 19% having obstructive CAD. The timely detection of CAD can help in optimizing treatment. Coronary CT angiography is cost effective, safe and non-invasive method of identifying CAD in asymptomatic diabetics with additional risk factors.

REFERENCES

1. International diabetes federation.
21. Achenbach S et al top 10 indications for coronary CTA. Ruling out stenosis in patients at low-to-intermediate risk for coronary artery disease tops the list, but coronary CT angiography has a much broader role to play. Supplement to applied radiology; 2006.

Source of Support: Nil, Conflict of Interest: None declared