An Observational Study for Evaluation of Supreme LMA in Paediatric Patients.

Muazzam Hasan¹, Subhro Mitra², Ankur Varshney¹, Nadeem Raza³, Syed Moied Ahmed⁴, Shahin Nikhat Jamil⁴

¹Senior Resident, Department of Anaesthesiology & Critical Care, JNMC, Aligarh, India.
²Assistant Professor, Department of Anaesthesiology, DMC, Dehradun, India.
³Assistant Professor, Department of Anaesthesiology & Critical Care, JNMC, Aligarh, India.
⁴Professor, Department of Anaesthesiology & Critical Care, JNMC, Aligarh, India.

ABSTRACT

Background: The need of securing the airway quickly in an easier and safer way, especially in paediatric patients still remains a major concern. Newer and safer alternatives to endotracheal intubations are being introduced. LMA supreme is one of such advancement in the field of paediatric anaesthesiology. Easy and quick insertion without any introducer, gastric access and high seal pressure are few advantages claimed by LMA Supreme. Apart from a few studies; the safety and efficacy of its paediatric version is yet to be established in Indian paediatric population. Thus, we have conducted an observational study for evaluation of Supreme LMA in paediatric patients. Observational clinical study. Methods: After obtaining approval from institutional ethical committee and consent from patient’s attendants, 50 patients of ASA grade I and II, weighing 10-20 kg of either sex undergoing general anaesthesia were included. After induction of anaesthesia and muscle relaxation, the LMA Supreme size 2 was inserted. Number of insertion attempts, ease of insertion, time taken for insertion, hemodynamic responses, ease of NGT insertion and incidence of airway trauma were recorded. Results: In 90% of patients, LMA Supreme was inserted in first attempt. In 94% of cases, insertion was easy. Average time required to insert LMA Supreme was 11.66 ± 0.81 seconds. There were no significant hemodynamic changes noted. In 2 % of cases, airway trauma was observed. Conclusion: LMA supreme emerged as a good alternate airway device. It is quick and easy to insert with fast learning curve with least alteration of hemodynamic status in paediatric population.

Keywords: LMA Supreme, Paediatric population.

INTRODUCTION

Airway management continues to remain one of the most challenging tasks for the anaesthesiologists and critical care providers. One should also consider the uniqueness of pediatric airway management. The need of making this indispensable task safer, quicker and easier; has led to the development of a number of new airway aids and devices from time to time. Introduction of LMA-laryngeal mask airway was one such advancement. Originally created as a hands-free replacement for the face mask, the LMA has gone on to replace endotracheal tubes as the preferred airway.[1] LMA offers several advantages, including ease of placement, lower drug requirement, reduced hemodynamic response, reduced intracranial and intraocular tension, smoother emergence and a lower incidence of airway trauma.[2] Various modifications in the structure and design of LMA are being made to make it better.

The LMA Supreme (SLMA) is one such uniquely designed single use supraglottic airway device. It provides easy insertion without the need for digital or introducer tool guidance. When positioned correctly SLMA forms two seals: one at the upper esophageal sphincter and the other over the glottic opening. Offers gastric access and higher seal pressure. It also has a unique fixation tab (FT), a rectangular structure moulded on to the manifold at right angles which projects over the patient’s upper lip [Figure 1]. It is designed to facilitate easy insertion and fixation of the SLMA™, after insertion and inflation of its cuff. The FT was found, in early pilot studies, to act as a Visual guide to ‘correct’ size selection, that is after inflation of the cuff to a pressure of 60 cm H₂O, the FT should be 1.5–2 cm from the upper lip, if the FT is less than this distance the size chosen may be too small and if 3.0 cm from the upper lip the size chosen may be too large.[6] It has been used in adult patients and performed well.[1-5] The latest advent of LMA Supreme is its paediatric versions which are now available in four different sizes–1, 1.5, 2, and 2.5 on the basis of body weight.[6] Apart from a few studies, the safety and efficacy of paediatric version is yet to be established in the Indian paediatric population. So we had conducted this prospective, single blinded observational study to determine the efficacy of SLMA in anaesthetised, paralysed children.
MATERIALS AND METHODS

After taking consent from parents and approval from the Board of Studies, Department of Anesthesiology & Critical Care and Ethics committee, a study was conducted in J N Medical College Hospital on 50 ASA I-II pediatric patients of either sex of weight between 10 – 20 kg undergoing general anesthesia using neuromuscular blockade and Intermittent Positive Pressure Ventilation (IPPV). Children with upper respiratory tract infection, history of lung disease, non fasting status, esophageal reflux, hiatus hernia were excluded from the study. Patients were premeditated with oral Midazolam 0.5 mg kg$^{-1}$ i.m. and inj. Atropine 0.02 mg kg$^{-1}$ i.m. Ketamine 5 mg kg$^{-1}$ i.m. All standard monitors were attached and intravenous line was placed. Anesthesia was induced with inj. Ketamine 2 mg kg$^{-1}$ i.v. until unresponsive to pain and this was followed by inj. Succinylcholine 1.5 mg kg$^{-1}$ i.v. to facilitate size 2 SLMA insertions as per instruction of manufacturer$^{[9]}$. A maximum of three attempts was allowed. An attempt was considered unsuccessful if proper placement of LMA was not there as evidenced by Et-CO$_2$ or bilateral equal air entry on chest auscultation and SpO$_2$ on pulse oximetry. In between two consecutive attempts patient was ventilated by face mask. The ease of insertion was recorded in terms of ‘Easy’ or ‘Difficult’, assessed using a subjective scale. The time (seconds) between picking LMA in hands to successful placement as evidenced by EtCO$_2$ or by bilateral equal air entry (auscultation method) and SpO$_2$. The insertion time was measured in seconds by an assistant using a stopwatch.

Following successful insertion, breathing circuit was attached and the patient was maintained with O$_2$+N$_2$O with Sevoflurane (1-2%). Basal values of pulse rate, mean blood pressure were recorded 5 min. prior to induction, after induction & just after insertion by an assistant. Further values were recorded at intervals of 1 minute, 3 minutes, 5 minutes after insertion. Injection fentanyl 2 ug/kg was given and surgery was allowed to commence only after the collection of the last hemodynamic data at 5 minutes post-insertion interval. Neuromuscular blockade was maintained by intermittent injection of Atracurium as and when required. Additional analgesics were given at the discretion of the anesthetist. The ease of orogastric tube placement was timed and assessed using a subjective scale. Intra-operative device repositioning or replacement due to excessive air leak or airway obstruction was noted.

At the end of the surgery, residual neuromuscular blockade was reversed with inj. Neostigmine (40 µg kg$^{-1}$) and inj. Glycopyrrolate (0.01mg kg$^{-1}$). After adequate reversal of neuromuscular blockade, SLMA was taken out. Airway trauma was assessed observing the patient’s airway and post procedural blood staining of the device, tongue-lip-dental trauma after removal of the device.

RESULTS

Patient’s age, weight, duration of surgery (DOS), attempts and time for SLMA insertion (TOI), pulse rate and mean arterial blood pressure changes during insertion, ease of orogastric tube placement and incidence of trauma were recorded. Data collected were entered into an EXCELTM spreadsheet (Microsoft, Redmond, WA, USA) and analyzed. Median age and weight of the children were 4 yrs (range 1.5-8 yrs) and 15 kg (range 10-20 kg) [Figure 2]. Median duration of surgery (DOS) was 50 minutes (range 15-100 minutes) [Figure 2] and maximum of the cases 29/50 were urogenital surgeries. In 45/50 cases (90%) SLMA could be inserted in first attempt. A second attempt was required in rest 5/50 (10%) cases and 3/50 cases were difficult for SLMA insertion. The median time required to pick the SLMA and successfully placing, it was 12 seconds (range 11-15 seconds) [Figure 2]. No statistical significant changes were recorded for pulse rate [Figure 3] or Mean arterial blood pressure change [Figure 4] before and after induction of anesthesia or SLMA insertion. Our all attempts to insert 10 FG orogastric tube through the drain tube were successful. In one case we evidenced lip trauma during SLMA insertion and in another case we found a blood stain in SLMA cuff after removal. In both cases, SLMA insertion was difficult.
DISCUSSION

The inventor of the ILMA and PLMA, Dr A.I.J. Brain, designed the SLMA as a single-use laryngeal mask airway device with gastric access, intending to combine the desirable features of both the Intubating LMA Fastrach (ILMA) and the PLMA. Our study was designed to observe the insertion qualities, hemodynamic changes and post-insertion complications of SLMA in the pediatric population. In our study SLMA could be inserted in the first attempt in 90% of cases, which is exactly same, found by Timmermann A et al[10] and Cook TM et al[11] in their studies. The rigid anatomically shaped airway tube of the SLMA facilitates easy insertion of the device without the need for insertion of the fingers of the user into the patient’s mouth. We found SLMA insertion easy in 47/50 patients. In 3 cases we used some maneuvers to place the SLMA properly. Tan BH et al[12] and Seet E et al[13] found SLMA insertion easy compared to the PLMA. We assume that relatively larger size SLMA might have been the cause of difficult insertion in those 3 cases. The range of insertion time (TOI) in our study was 11-15 seconds, which is supported by similar findings of the SLMA. In 90% of cases, the TOI was less than 15 seconds. This is shorter compared to the ILMA, where the TOI is usually between 15-30 seconds. The reinforced tip of the SLMA might be the cause of less stimulation and incidence of SLMA might be the cause of less stimulation and hemodynamic changes. The reinforced tip of the SLMA, containing drain tube (DT) did not fold over in any patient, as the passage of a orogastric tube was easily performed in all cases. We could not confirm the proper SLMA position by pediatric flexible fibreoptic bronchoscope due to unavailability. Our observations also lacked the ventilatory parameters. In our study incidence of SLMA in 2 cases was assumed due to a larger size SLMA.

In both cases the distance of FT from upper lip was 3 cm, as we measured after insertion. Also incorrect positioning of the SLMA results in poor airway seal and an audible and immediately detectable leak of delivered gases through the DT[8]. We conclude that LMA Supreme (SLMA) has emerged as a good alternate airway device in terms of number of insertion attempts, ease of insertion, time taken for device placement, hemodynamic responses, number of attempts for orogastric tube placement and incidence of airway trauma in paediatric patients undergoing general anaesthesia.

CONCLUSION

LMA supreme emerged as a good alternate airway device. It is quick and easy to insert with fast learning curve with least alteration of hemodynamic status in paediatric population.

REFERENCES

Source of Support: Nil, Conflict of Interest: None declared